Session 2

- Design information for closed loop systems
- Driller instructions and specifications
- What can go wrong

.....

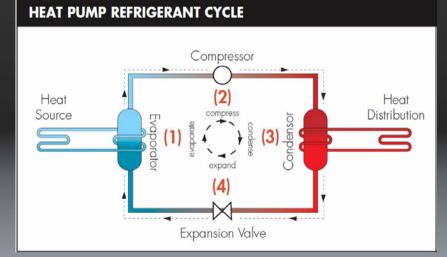
ClipartOf.com/1126797

What is a Building Load

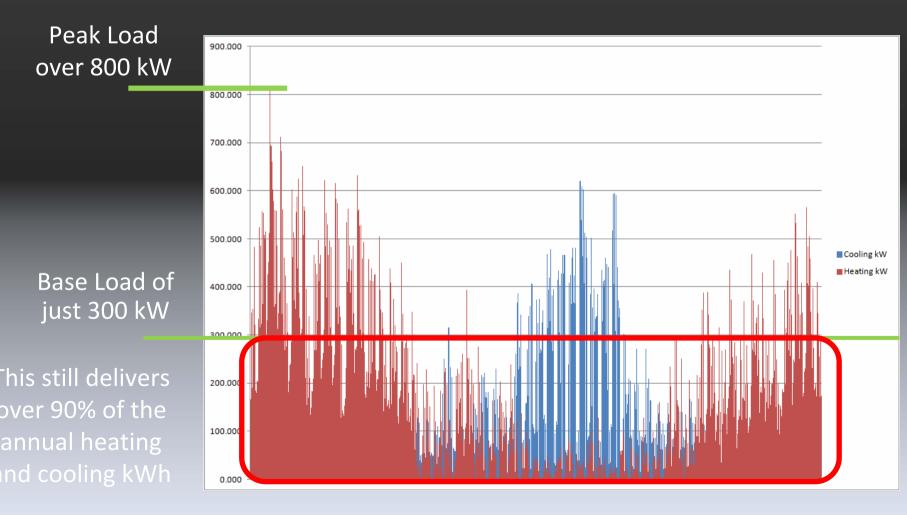
Put simply...It's the energy needed to keep the internal temperature at a set point when considering everything that happens in the building and what is going on outside and what the building is made of

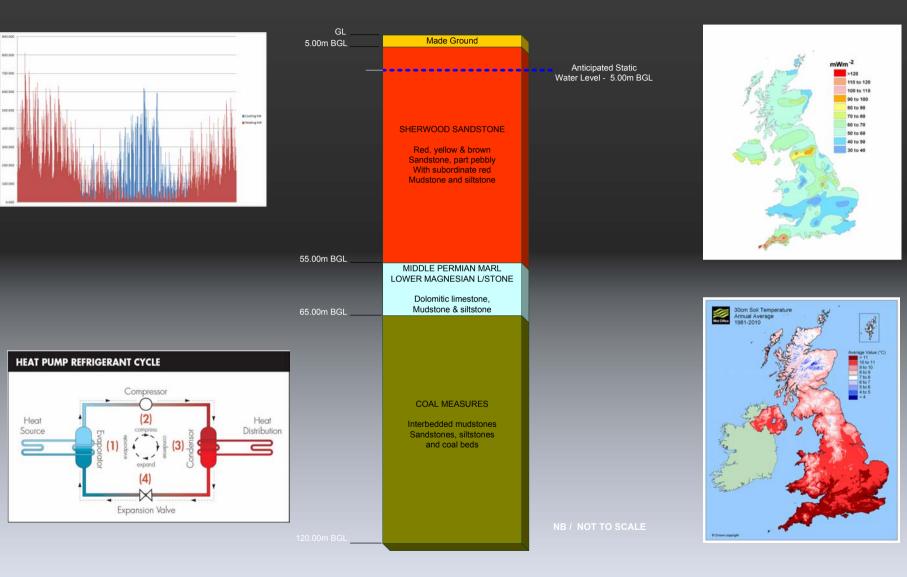
n Invisutremmeralbies trivinigitouget Intrainyobynchia krevtertget op otutip

dd this up for each hour of each day and you arrive at the annual load

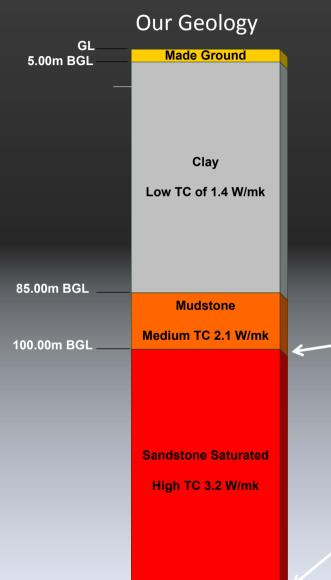


35°C!!


What is a Ground Load


The "Ground Load" takes into consideration the compressor within the heat pump

<u>Total Heat Absorption</u> is energy from the ground (3 kW) + Energy from the compressor (1 kW) going into the building (4 kW) = COP 4 <u>Total Heat Rejection</u> is energy from the building (4 kW) + Energy from the compressor (1 kW) going into the ground (5 kW) = COP 5

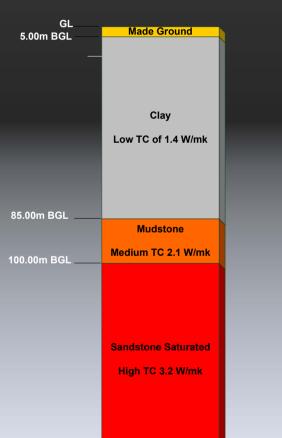

What is a Base Load

Our Geology

GL 5.00m BGL	Made Ground	Anticipated Static	1. Thermal Conductivity
	SHERWOOD SANDSTONE	Water Level - 5.00m BGL	2. Average Undisturbed Temperature
	Red, yellow & brown Sandstone, part pebbly With subordinate red Mudstone and siltstone	2.8 W/mk	3. Volumetric Heat Capacity
			4. Diffusivity
55.00m BGL65.00m BGL	MIDDLE PERMIAN MARL LOWER MAGNESIAN L/STONE Dolomitic limestone, Mudstone & siltstone	3.6 W/mk	Accurate drill logs are vital to understand strata thickness and details of the geology and water levels
			They will be read and used by the designer. They are not just filed.
	COAL MEASURES		
	Interbedded mudstones Sandstones, siltstones and coal beds	2.4 W/mk	
		NB / NOT TO SCALE	

The outline design must be done before a test hole is drilled. The outline design decides what is needed for a test hole !!

Test Hole installed to 100 m gives Thermal Conductivity of <u>1.52</u> for the entire borehole


Test Hole installed to 150 m gives Thermal Conductivity of <u>2.07</u> for the entire borehole

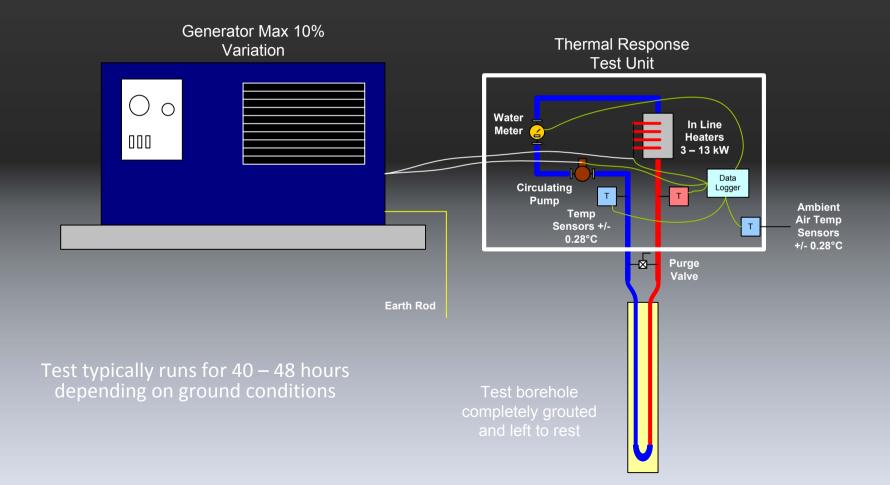
150.00m PCI

MIS 3005 Look Up Tables

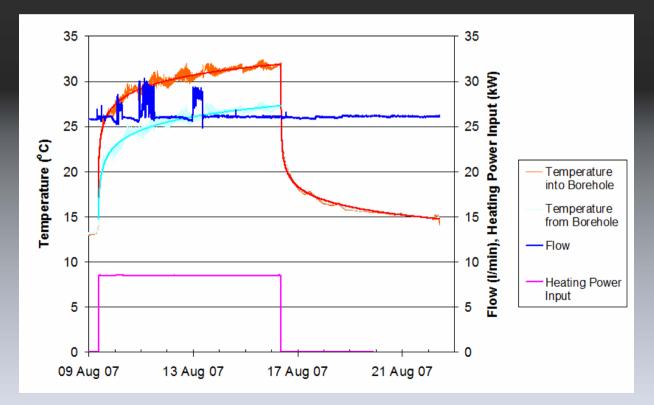
	Average	21	24	2,		00			72	40	40
2.4 1.7 1.7 0.5	Average ground thermal conductivity (W/m/K)	28 21	32 24	36 27	40 30	43 33	47 36	51 39	55 42	59 45	63 48
3.4	conductivity (33	37	42	47	51	56	61	65	69	74
	(X/m/X) 4.0-	37	41	47	52	57	62	67	72	77	83

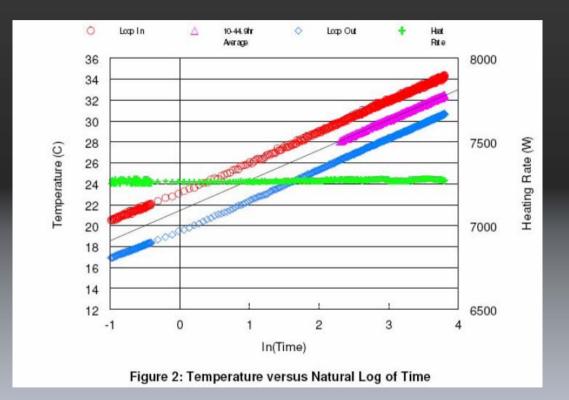
Accurate Drill Log?

Hole Fully Grouted?



Hole Drilled with Air in Summer?




Hole Drilled with Mud in Winter?

Insulate the TRT unit from the elements. Weather conditions can affect the results of the test and therefore the system design and performance

Steady heat input and flow rate, no external influences, take the time period between 10 and 44 hrs

Design Detail

Date: 10th June 2014 Client: Kensa Engineering Project Number: 494 Project Name: Spalding Housing Location: Whaplode Drove Borehole Quantity: 16

Datum point: Ground Level

Borehole Layout Drawing: 494.01.03 Rev B

Design & Geology Report: "140403_Whaplode Drove_Design"

GROUND SOURCE
CONSULT Ltd

Property Address	Borehole ID	Borehole Diameter	Bore Depth Below Datum	Loop Dia	Double or Single Loop	Loop Installed Depth Below Datum	Grout Type	Grout Conductivity
2, Farrow Rd	1	140	122.5	40	Double	120.0	GSL - Connect	1.78 W/mk
4, Farrow Rd	2	140	122.5	40	Single	120.0	GSL - Connect	1.78 W/mk
6, Farrow Rd	3	140	122.5	40	Single	120.0	GSL - Connect	1.78 W/mk
6, Farrow Rd	4	140	122.5	40	Single	120.0	GSL - Connect	1.78 W/mk
10, Farrow Rd	5	140	122.5	40	Single	120.0	GSL - Connect	1.78 W/mk
12, Farrow Rd	6	140	122.5	40	Single	120.0	GSL - Connect	1.78 W/mk
1, Coppers Close	7	140	121.0	40	Single	118.5	GSL - Connect	1.78 W/mk
2, Coppers Close	8	140	121.0	40	Single	118.5	GSL - Connect	1.78 W/mk
3, Coppers Close	9	140	121.0	40	Single	118.5	GSL - Connect	1.78 W/mk
4, Coppers Close	10	140	121.0	40	Single	118.5	GSL - Connect	1.78 W/mk
1, Greenbank	11	127	83.0	32	Single	80.5	GSL - Connect	1.91 W/mk
2, Greenbank	12	127	83.0	32	Double	80.5	GSL - Connect	1.91 W/mk
3, Greenbank	13	127	83.0	32	Double	80.5	GSL - Connect	1.91 W/mk
4, Greenbank	14	127	83.0	32	Single	80.5	GSL - Connect	1.91 W/mk
1, Chapel Gate	15	127	87.0	32	Single	84.5	GSL - Connect	1.91 W/mk
3, Chapel Gate	16	127	87.0	32	Single	84.5	GSL - Connect	1.91 W/mk

Note the reference to the design and geology report and the borehole layout drawings

Drilling Instruction

 Date:
 10th June 2014

 Client:
 Kensa Engineering

 Project Number:
 494

 Project Name:
 Spalding Housing

 Location:
 Whaplode Drove

 Borehole Quantity:
 16

 Datum point:
 Ground Level

 Borehole Layout Drawing:
 494.01.03 Rev B

Design & Geology Report: "140403_Whaplode Drove_Design"

Expert Geothermal Drilling Ltd

Property Address	Borehole ID	Borehole Diameter	Drilling Method	Additives / Mixture	Bore Depth Below Datum	Site Access Requirements	Estimated Rest Water Level	Casing Requirements	Special Instruction
2, Farrow Rd	1	140	Fluid Flush - Bentonite	40 Sec Viscosity / Weight Agents	122.5	Track Boards	3 m artesian head	Through drift and 10 m into solid clay	Resident requires disabled access
4, Farrow Rd	2	140	Fluid Flush - Bentonite	40 Sec Viscosity / Weight Agents	122.5	Track Boards	3 m artesian head	Through drift and 10 m into solid clay	Resident requires disabled access
6, Farrow Rd	3	140	Fluid Flush - Bentonite	40 Sec Viscosity / Weight Agents	122.5	Lift Garden Slabs and track boards	3 m artesian head	Through drift and 10 m into solid clay	Pristine garden
6, Farrow Rd	4	140	Fluid Flush - Bentonite	40 Sec Viscosity / Weight Agents	122.5	Lift Garden Slabs and track boards	3 m artesian head	Through drift and 10 m into solid clay	Abrasive resident
10, Farrow Rd	5	140	Fluid Flush - Bentonite	40 Sec Viscosity / Weight Agents	122.5	Move and store azalea and track boards	3 m artesian head	Through drift and 10 m into solid clay	N/A
12, Farrow Rd	6	140	Fluid Flush - Bentonite	40 Sec Viscosity / Weight Agents	122.5	Track Boards	3 m artesian head	Through drift and 10 m into solid clay	Tight access next to garden wall
1, Coppers Close	7	140	Fluid Flush - Bentonite	40 Sec Viscosity / Weight Agents	121.0	Track Boards	1 m artesian head	Through drift and 10 m into solid clay	N/A
2, Coppers Close	8	140	Fluid Flush - Bentonite	40 Sec Viscosity / Weight Agents	121.0	Track Boards	1 m artesian head	Through drift and 10 m into solid clay	Take out gate post and remove gates
3, Coppers Close	9	140	Fluid Flush - Bentonite	40 Sec Viscosity / Weight Agents	121.0	Track Boards	1 m artesian head	Through drift and 10 m into solid clay	N/A
4, Coppers Close	10	140	Fluid Flush - Bentonite	40 Sec Viscosity / Weight Agents	121.0	Track Boards	1 m artesian head	Through drift and 10 m into solid clay	N/A
1, Greenbank	11	127	Air Flush	Water mist injection	83.0	Work from hard standing	10 m below ground level	As required for ease of drilling	Abrasive resident
2, Greenbank	12	127	Air Flush	Water mist injection	83.0	Work from hard standing	10 m below ground level	As required for ease of drilling	Tight access next to hedge
3, Greenbank	13	127	Air Flush	Water mist injection	83.0	Work from hard standing	10 m below ground level	As required for ease of drilling	Caravan may need to be moved
4, Greenbank	14	127	Air Flush	Water mist injection	83.0	Work from hard standing	10 m below ground level	As required for ease of drilling	N/A
1, Chapel Gate	15	127	Air Flush	Water mist injection	87.0	Work from hard standing	8 m below ground level	As required for ease of drilling	new build / other trades on site
3, Chapel Gate	16	127	Air Flush	Water mist injection	87.0	Track Boards	8 m below ground level	As required for ease of drilling	new build / other trades on site

Completion Instruction

 Date:
 10th June 2014

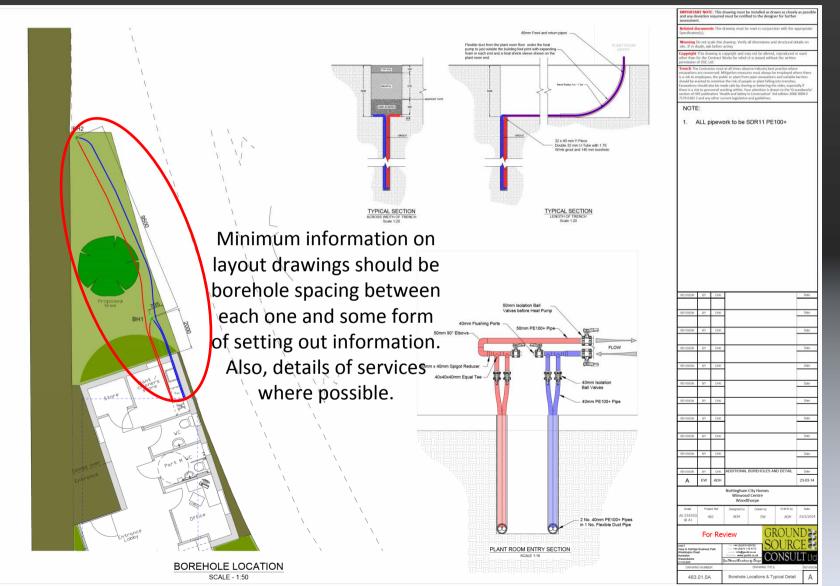
 Client:
 Kensa Engineering

 Project Number:
 494

 Project Name:
 Spalding Housing

 Location:
 Whaplode Drove

 Borehole Quantity:
 16


 Datum point:
 Ground Level

 Borehole Layout Drawing:
 494.01.03 Rev B

 Design & Geology Report:
 "140403 Whaplode Drove Desian"

£xpert Geothermal

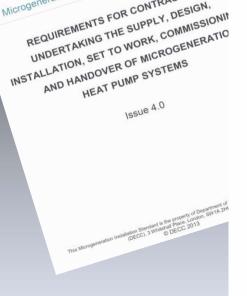
·							-				· · · · · · · · · · · · · · · · · · ·
Property Address	Borehole ID	Loop Installed Depth Below Datum	Loop Dia mm	Double or Single Loop	Weights required	Grout Type	Grout Conductivity	Sanitisation	Loop Testing	Loop Completion	Loop Protection
2, Farrow Rd	1	120.0	40	Double	45 kg under the loop	GSL - Connect	1.78 W/mk	R500C Biocide 1 %	Flow and Pressure test	Fused caps above ground level	Hi Viz tape above ground level
4, Farrow Rd	2	120.0	40	Single	25 kg under the loop	GSL - Connect	1.78 W/mk	R500C Biocide 1 %	Flow and Pressure test	Fused caps above ground level	Hi Viz tape above ground level
6, Farrow Rd	3	120.0	40	Single	25 kg under the loop	GSL - Connect	1.78 W/mk	R500C Biocide 1 %	Flow and Pressure test	Fused caps above ground level	Hi Viz tape above ground level
6, Farrow Rd	4	120.0	40	Single	25 kg under the loop	GSL - Connect	1.78 W/mk	R500C Biocide 1 %	Flow and Pressure test	Fused caps above ground level	Hi Viz tape above ground level
10, Farrow Rd	5	120.0	40	Single	25 kg under the loop	GSL - Connect	1.78 W/mk	R500C Biocide 1 %	Flow and Pressure test	Fused caps above ground level	Hi Viz tape above ground level
12, Farrow Rd	6	120.0	40	Single	25 kg under the loop	GSL - Connect	1.78 W/mk	R500C Biocide 1 %	Flow and Pressure test	Fused caps above ground level	Hi Viz tape above ground level
1, Coppers Close	7	118.5	40	Single	25 kg under the loop	GSL - Connect	1.78 W/mk	R500C Biocide 1 %	Flow and Pressure test	Fused caps above ground level	Hi Viz tape above ground level
2, Coppers Close	8	118.5	40	Single	25 kg under the loop	GSL - Connect	1.78 W/mk	R500C Biocide 1 %	Flow and Pressure test	Fused caps above ground level	Hi Viz tape above ground level
3, Coppers Close	9	118.5	40	Single	25 kg under the loop	GSL - Connect	1.78 W/mk	R500C Biocide 1 %	Flow and Pressure test	Fused caps above ground level	Hi Viz tape above ground level
4, Coppers Close	10	118.5	40	Single	25 kg under the loop	GSL - Connect	1.78 W/mk	R500C Biocide 1 %	Flow and Pressure test	Fused caps above ground level	Hi Viz tape above ground level
1, Greenbank	11	80.5	32	Single	15 kg under the loop	GSL - Connect	1.91 W/mk	Potable water only	Flow and Pressure test	Fused caps below ground level	Stop Cock Cover at ground level
2, Greenbank	12	80.5	32	Double	20 kg under the loop	GSL - Connect	1.91 W/mk	Potable water only	Flow and Pressure test	Fused caps below ground level	Stop Cock Cover at ground level
3, Greenbank	13	80.5	32	Double	20 kg under the loop	GSL - Connect	1.91 W/mk	Potable water only	Flow and Pressure test	Fused caps below ground level	Stop Cock Cover at ground level
4, Greenbank	14	80.5	32	Single	15 kg under the loop	GSL - Connect	1.91 W/mk	Potable water only	Flow and Pressure test	Fused caps below ground level	Stop Cock Cover at ground level
1, Chapel Gate	15	84.5	32	Single	15 kg under the loop	GSL - Connect	1.91 W/mk	Potable water only	Flow and Pressure test	Fused caps below ground level	Stop Cock Cover at ground level
3, Chapel Gate	16	84.5	32	Single	15 kg under the loop	GSL - Connect	1.91 W/mk	Potable water only	Flow and Pressure test	Fused caps below ground level	Stop Cock Cover at ground level

Driller instruction and specifications **Applicable Standards and Guidance**

Closed-loop Vertical Borehole Design, Installation & Materials Standards

Issue 1.0

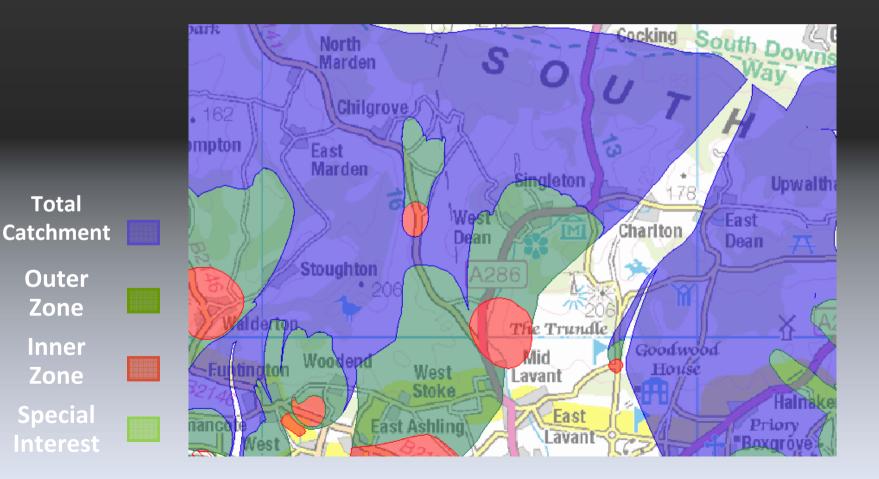
September 2011

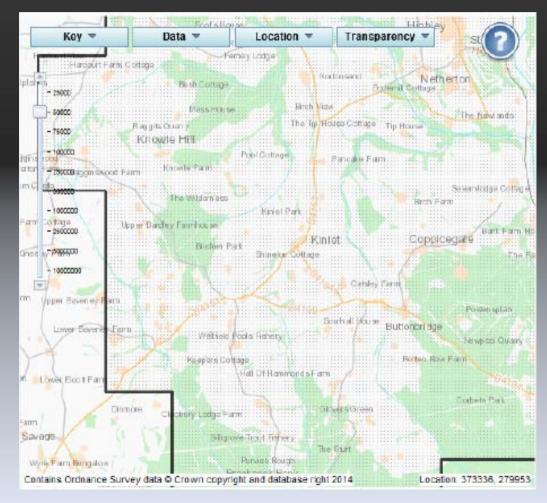

Published & Copyright @ by

Ground Source Heat Pump Association National Energy Centre, Davy Avenue, Knowlhill, Milton Keynes MK5 8NG

> T: 01908 354545 F: 01908 665577

Email: info@GSHP.org.uk




Microgeneration Installation Standard: MIS 3005

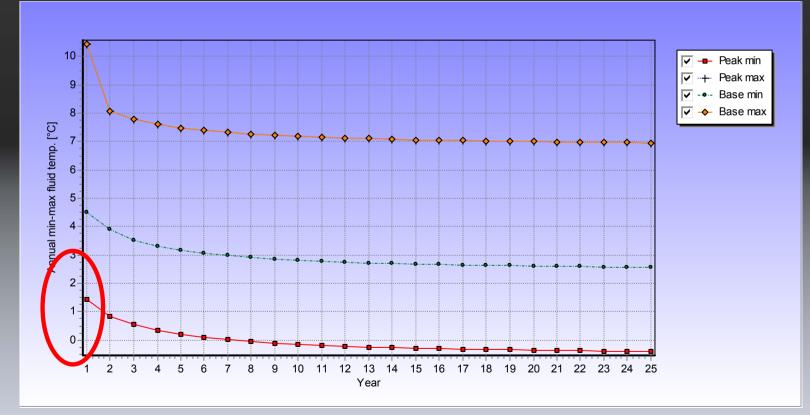
REQUIREMENTS FOR CONTRACTORS UNDERTAKING THE SUPPLY, DESIGN,

Environment Agency have <u>Source Protection Zones</u> (SPZ's). Ensure that these have been checked

The Coal Authority also has on-line maps of coal reporting areas, mine entries and mining records

Coal Authority Reporting Area

Without detailed instructions, drawings and dimensions, things can and do go wrong.


Change	Impact	Extra Loop	Other Impacts
Reduce Spacing from 11 to 5 m	Heat Pump Entering temperature reduced from 0°C to -5.5°C	42%	No longer complies with MCS after just 4 years
Install single loop when double is designed	Heat Pump Entering temperature reduced from 0°C to -2.5°C	15%	Head loss in the loop goes from 4 m to 20 m head No longer complies with MCS after 8 years
Use Std Bentonite and not Thermally Enhanced Grout	Heat Pump Entering temperature reduced from 0°C to -3°C	18%	No longer complies with MCS after 7 years
Get all three wrong	Heat Pump Entering temperature reduced from 0°C to -12°C	82%	Doesn't comply with MCS from year 1

Just a few other things to be aware of

- Boreholes in wrong positions can interfere with other services on site
- Boreholes that are not flow and pressure tested are not complete
- Boreholes that are not protected as instructed are not complete
- Changing the number and depth of holes impacts the performance and hydraulics
- Drilling in Source Protection Zones can impact nearby sources with drilling fluids for example
- Drilling without checking for mine works can create unstable surfaces for the rigs and can lead to gas escaping or spontaneous combustion of seams

Driller says...

"On this house I couldn't get the loop in past 65 m so I cut it in half and put two in to 55 m is that OK" ??

If he had asked then a re-design is pretty easy. 2 holes to 60 m in series

Beware the employer or contractor asking drillers to change things because it suits them better !!

Resident didn't want to move his caravan and so asked the driller to drill on the white dot !

Unauthorised re-design by the dog !! He moved half of the pin flags that marked out the holes !!

Only the designer can change the design !

Q & A on session 2

Any questions....

Any slides you want to go back to?

Break for Lunch