Session 4

- Grouting & backfilling
- Flow and pressure testing
- Recording of the installation

What is grout what is backfill.

Definition of Backfill Material used for refilling an excavation

Definition of Grout

a thin, coarse mortar poured into various narrow cavities, as masonry joints or rock fissures, to fill them and consolidate the adjoining objects into a solid mass.

What is required of a geothermal grout.

GSHPA VBS – Section 8 is all about grouts. Outlining the sealing requirements and levels of acceptable permeability and conductivity,

> Closed-loop Vertical Borehole Design, Installation & Materials Standards

> > Issue 1.0 September 2011

Published & Copyright © by Ground Source Heat Pump Association National Energy Centre, Davy Avenue, Knowthill, Milton Keynes MK5 8NG

> T: 01908 354545 F: 01908 665577 Email: info@GSHP.org.uk

Thermal Grout is an engineered component of the closed loop system installation. It is part of the design

Different Types of Grout & Impact on Loops

- Cement & Water only
- Cement, Bentonite & Water
- Bentonite, Cement, Sand & Water
- Bentonite & Water only
- Bentonite, Silica Sand & Water

Grouting & Backfilling Bentonite Mixing

A Geoျဝရာမွေးလျှန်ကြေ့ဖုန်းညွှမ်းရှိနှင့်မှမြမှုခဲ့၊ to mix thermally enhanced bentonite grouts.

100 m hole Canswergron tet ih under an hour

Other paddle mixer pumps are fine and many contractors may already have paddle mixer and positive displacement pumps to get started in the geothermal field without immediate outlay for new pumps

Bentonite Mixing

Simple Paddle Mixer

Grouting & Backfilling Bentonite Pumping

It even comes with its own hammer !!

The Geo-loop pumps have a very hard chrome liner system to take the sand of thermally enhanced grouts

> All pump and valve are removed by hammer fixings so is extremely quick t dismantle in the fie if required

Bentonite Pumping

Crucially however the Geo-Loop system comes with powered sand loaders, loop reels and tremmie reels all operated from the same grout unit to arrive at a total grouting unit that can be operated by one man once its in the field.

Tremmie Pipes and Their Importance

This is not a tremmie pipe

Grout must be placed from bottom of the hole to the top of the hole

Grout must be placed until hick consistent grout appears at the surface and not just creamy water.

Thermal Enhancement using Silica Sand

Not all Silica Sands are made equal

Silica Dioxide is the magic ingredient

This may have the least appealing packaging but it has been selected and tested by the supplier to ensure it is suited to thermally enhanced grouts

The difference between 95% and 99.7% is in fact quite large and may result in using 175 Kg per batch as opposed to 125 Kg

Water Quality & Grout Samples

Water makes up a large percentage of the mixture.

Some grout suppliers provide sampling as free service.

Ensure water available on site is suitable quality with a water test kit.

Grout sampling is an important element of the quality control and reporting, in particular if the quality of sand is unknown,

Loops Being Displaced From the Hole !

You may have worked out how much weight you need on the loop to get it through the mud when you put it in but when you start grouting, how much weight would it need to stop the grout shoving it back out ??

Number of loops per bore	2	nr
Loop Diameter	32	mm
Hole Depth	135	m
Rest Water level	0	m
Bore Fluid Densit	1700	kg/m3
Water in loop density	1000	kg/m3
PE100 Density	955	kg/m3

The loop tails must be secured to prevent the loop being displaced. Even though in theory it needs 500 Kg, in reality it only needs to be secured because it has to over come the viscosity of the grout now.

However, beware... if it starts, it can be hard to stop !!

Examples of securing a loop to the surface

Once Bitten Use Sleepers !

Alternative uses Heras fencing clips and tied it to casing

Statie

ackfilling with granular fill requires skill and experience

A Tremmie pipe should be used to ensure the backfill is placed in the correct area

The Tremmie pipe is raised as the level of backfill rises but the backfill should not be able to fall more than 3 m in the annulus

Once the fill is at the correct level, grout should always still be used to seal the hole to avoid creation of a

Granular Fill

Static

The granular backfill material should be well rounded and not have sharps within it or be angular.

Angular gravels can place point loads onto the pipe material which may lead to an increase in slow crack propagation, reducing the lifespan of the material

Backfill is used mainly in very deep boreholes and also to bridge areas where grout loss cannot be stopped.

This is not the way to place backfill materials !!

These are the tests that once carried out, recorded and accepted by the client complete the installation.

These are the money tests so its worth getting these right !!!

Flow testing should always be done first

This borehole failed its flow test but it did flow. That means it would have passed its pressure test. The loop could be 99% blocked but still pass a pressure test.

This is the borehole that had a bucket full of gravel in it !!

What must be measured during a flow test?

The flow rate in the loop

Anything else?

The Pressure developed in the loop

Flow & Pressure Testing Schematic of a flow test.

- Gauges as close to the loop tails as possible
- Smooth Pump
- -low restricting valve to achieve different flow rates
- *Water meter and / or bucket with known volume*
- Stop watch

W/thaits adpoards tonisactaid?

One is partially blocked but which one?

A flow test must have more than one test value and preferably at least 3 different flow rates and corresponding pressures.

Borehole 3 has failed the test Pressure diverges from the calculated values

Flow testing is not as easy as it sounds

- A Smooth pump is needed. Piston pumps pulse and it is hard to accurately read the pressure gauges
- Accurate pressure gauges are required preferably digital but avoid ones without Glycerine in as the needle can bounce all over the place.
- The test needs to be done with the gauges as close to the loop flow and return as possible
- The flow meter needs to be accurate and in many ways, measuring into a bucket or a known volume test is by far the easiest and usually the most accurate

The contractor on site couldn't get the flow test values to even remotely tally with the calculated values

Spot the reasons why?

25 mm valves on a 40 mm loop seriously restricting flow

30 m of 1" pipe between the test kit and the borehole

The flow restrictions and extra pipe meant that the contractor was not testing the loop but was testing the loop, the 1" pipe and the 25 mm small bore valves.

Flow & Pressure Testing Pressure test is to be done to BS EN 805

PE pipes will expand under pressure and the test may go on and on to get to stable pressure

BS EN 805 Simple Test

WRc Decay Test

Does weather alter the results of a pressure tests?

There may only be a few metres of pipe work for loop tails but if the sun comes out and shines onto a black pipe it gets hot.

If this happens during a test, the pipe will expand and become softer and the results may be impacted.

This is worse in the summer when the sun is far stronger of course

Typical simple pressure test set up

Bleed/isolation Valves

Pressure pump connection Pressure pump

A stop watch, pencil and paper !

Flow & Pressure Testing Selecting the test pressure

The Test...

Borehole No. 1				Name of Cont	actor Perfect Geo Lto		
L	oop No.	GSL - 134	614	Name of Inst	aller	James Wilkes	
Installec	l Loop Length	135 m	ı	Name of Te	ster	Les Morrice	
Date of I	Loop Insertion	10 th June 2	2014	Date of Te	est	12 th June 2014	
Head	ler Set No.	N/A		Pass or Failed	d Test	Pass	
Date of Gr	outing 10 th Jun	e 2014		Signature of T	ester		
No. of Gro Notes:	ut mixes 14			Signature Enginee	of r		
		Pressu	ure Test I	Results			
Elapsed time mins.	Pressure (Bar) (Theory)	Pressure (Bar) (Actual)	No. re Tes	of pumps to -establish st Pressure (Theory)	N Test	No. of pumps to re-establish st Pressure (Actual)	
0		12		• • •			
10		11.9				7	
20		12.1				4.5	
30		12			3		
40	40 12					1.75	
50		12.1				1	
60		12				0.5	
70		12				0	
80		12				0	

The Results...

Reasonably straight line Steady Curve until pumping stops

Why record the install?

"Where is the loop?"

"There is a car park and building where we drilled when it was a field"

Borehole Drill Log & Completion Record for the Installation of the Loop

										-		
Client:	Ground Source	e Consult	Rig No.	. 4 Driller: l		Les Morrice Date Started:		9th June 2014				
Site:	: Integer Rig Type:		COM405P	Assistant Driller:	James Wilkes	James Wilkes Date Completed:		2014	Expert Geothermal			
Location:	London		Flush Medium:	Fluid	Assistant Driller:		Weather:	Drizzle / \	Varm	Drilling ftd		
Borehole No.	1 (test bore)						Rest Water/Fluid Level	At surface	9	00		
	-					Drilling Details						
Depth From	Thickness	Bore Depth	Bit Size and Method	Casing Installed		Geology		Returns	Peteration Rates (m/min)	Notes	Mud Weight	Mud Viscosity
GL	1.2	1.2	Auger		Top S	oil bricks and bac	kfill	100%	0.3		N/A	N/A
1.2	4	5.2	Auger		Saturated sand and gravel				0.1		N/A	N/A
5.2	1	6.2	Auger	6.2 m 150 NB	Brown v	veathered Londor	n Clay	100%	0.1		N/A	N/A
6.2	23.5	29.7	143 mm 3 wing TC Drag and fluid flush		Grey stiff London Clay with hard limestones bands at 21.5 m				0.8	Start Fluid Flush / Polymer added	1002 Kg/m3	35 Sec
29.7	8.5	38.2	143 mm 3 wing TC Drag and fluid flush		Mottled red grey and brown clay				0.8		1010 Kg/m3	38 Sec
38.2	7.8	46	143 mm 3 wing TC Drag and fluid flush		Grey / green clays with pebbles				0.8		1008 Kg/m3	45 Sec
46	6.9	52.9	143 mm 3 wing TC Drag and fluid flush		Very	fine green silty sa	nd	100%	1		1009 Kg/m3	52 Sec
52.9	0.9	53.8	143 mm 3 wing TC Drag and fluid flush		Black flint pe	bbles and chalk f	ragments	10%	0.3	Fluid loss prevention	1021 Kg/m3	48 Sec
53.8	1.8	55.6	143 mm 3 wing TC Drag and fluid flush		Soft yell	Soft yellow putty chalk and flints				Bit changed from drag bit to roller bit	1045 Kg/m3	55 Sec
55.6	58	113.6	143 mm Rock Roller and Fluid Flush		white chalk with many flints				0.7	Fluid thinned	1025 Kg/m3	41 Sec
113.6	68	181.6	143 mm Rock Roller and Fluid Flush		White chalk with few flints				0.9		1026 Kg/m3	40 Sec
181.6	5	186.6	143 mm Rock Roller and Fluid Flush		Grey marly chalk with few flints				0.8		1031 Kg/m3	42 Sec
								1				
	Loop Ins	tallation Deta	<u>ils</u>		<u> </u>	Grouting Details			Drillers Notes:			
				1		1	Stoppod to ro p	ook owivel at 10.00 c	om to 10 15 om			

Stopped to re-pack swivel at 10.00 am to 10.15 am.	Site Vi	si
from clients representative		

Loop Installation Details									
Loop Depth:	182 m								
Tremmie Depth:	182 m								
Loop Diameter:	40 mm								
No. Loops per Hole:	2 nr								
Fluid Level at loop install:	Surface								
Fluid Weight at Hole TD:	1031 Kg/m3								
Weights added to loops:	63 Kg Under Loop								
Loop Serial No.	GSL- 134614								

Grouting Details								
Grout Start Depth:	GL							
Grout Bottom Depth:	60							
Granular Fill Start Depth:	60							
Granular Fill Bottom Depth:	186.6							
Type of Grout Used:	GSL-Connect							
Grout Mix Ratio to Sand:	1 : 5							
No. Bags/Kg Sand Used:	30							
No. Bags/Kg Grout Used:	6							

Summary Record of Installation details

Client:	Kensa Group	Date Project Started:	9th June 2014	Freet Ceathermal					
Site:	Whaplode Drove	Date Project Completed:	20th June 2014						
Location:	Spalding			Drilling Itd					
Summary Installation Datails									

Property Address	Borehole ID	Drilled Depth	Loop Serial No.	Loop depth	Loop Dia mm	Double or Single Loop	Grout Depth	Installation Date	Driller	Rig No.	Marked on site plan
2, Farrow Rd	1	123.5	GSL - 134616	120	40	Double	123.5	9th June 2014	Les Morrice	4	yes
4, Farrow Rd	2	121.5	GSL - 134614	120	40	Single	121.5	10th June 2014	Les Morrice	4	yes
6, Farrow Rd	3	120.0	GSL - 134615	119	40	Single	120.0	11th June 2014	Les Morrice	4	yes
6, Farrow Rd	4	122.5	GSL - 134617	120	40	Single	122.5	12th June 2014	Les Morrice	4	yes
10, Farrow Rd	5	122.5	GSL - 134618	120	40	Single	122.5	13th June 2014	Les Morrice	4	yes
12, Farrow Rd	6	122.5	GSL - 134623	120	40	Single	122.5	16th June 2014	Les Morrice	4	yes
1, Coppers Close	7	123.0	GSL - 134624	118.5	40	Single	123.0	17th June 2014	Les Morrice	4	yes
2, Coppers Close	8	123.0	GSL - 134625	118.5	40	Single	123.0	18th June 2014	Les Morrice	4	yes
3, Coppers Close	9	121.0	GSL - 134619	118.5	40	Single	121.0	19th June 2014	Les Morrice	4	yes
4, Coppers Close	10	121.0	GSL - 134620	118.5	40	Single	121.0	20th June 2014	Les Morrice	4	yes
1, Greenbank	11	84.0	GSL - 134621	80.5	32	Single	84.0	10th June 2014	Steve Goulding	7	yes
2, Greenbank	12	83.0	GSL - 134622	80.5	32	Double	83.0	11th June 2014	Steve Goulding	7	yes
3, Greenbank	13	85.0	GSL - 134626	80.5	32	Double	85.0	12th June 2014	Steve Goulding	7	yes
4, Greenbank	14	85.0	GSL - 134627	80.5	32	Single	85.0	13th June 2014	Steve Goulding	7	yes
1, Chapel Gate	15	87.0	GSL - 134628	84.5	32	Single	87.0	16th June 2014	Steve Goulding	7	yes
3, Chapel Gate	16	88.0	GSL - 134629	84.5	32	Single	88.0	17th June 2014	Steve Goulding	7	yes

Summary report flow and pressure test

Client:	Kensa Group	Date Project Started:	9th June 2014	Fynert Beathermal
Site:	Whaplode Drove	Date Project Completed:	24th June 2014	
Location:	Spalding			Drilling Itd

<u>Summary installation Details</u>												
Property Address	Borehole ID	Drilled Depth	Loop Serial No.	Loop depth	Loop Dia mm	Double or Single Loop	Grout Depth	Pressure Test Date	Test Passed	Flow Test Date	Test Passed	Tester
2, Farrow Rd	1	123.5	GSL - 134616	120	40	Double	123.5	11th June 2014	yes	11th June 2014	yes	Les Morrice
4, Farrow Rd	2	121.5	GSL - 134614	120	40	Single	121.5	11th June 2014	yes	11th June 2014	yes	Les Morrice
6, Farrow Rd	3	120.0	GSL - 134615	119	40	Single	120.0	14th June 2014	yes	14th June 2014	yes	Les Morrice
6, Farrow Rd	4	122.5	GSL - 134617	120	40	Single	122.5	14th June 2014	yes	14th June 2014	yes	Les Morrice
10, Farrow Rd	5	122.5	GSL - 134618	120	40	Single	122.5	18th June 2014	yes	18th June 2014	yes	Les Morrice
12, Farrow Rd	6	122.5	GSL - 134623	120	40	Single	122.5	19th June 2014	yes	19th June 2014	yes	Les Morrice
1, Coppers Close	7	123.0	GSL - 134624	118.5	40	Single	123.0	20th June 2014	yes	20th June 2014	yes	Les Morrice
2, Coppers Close	8	123.0	GSL - 134625	118.5	40	Single	123.0	20th June 2014	yes	20th June 2014	yes	Les Morrice
3, Coppers Close	9	121.0	GSL - 134619	118.5	40	Single	121.0	23rd June 2014	yes	23rd June 2014	yes	Les Morrice
4, Coppers Close	10	121.0	GSL - 134620	118.5	40	Single	121.0	23rd June 2014	yes	23rd June 2014	yes	Les Morrice
1, Greenbank	11	84.0	GSL - 134621	80.5	32	Single	84.0	23rd June 2014	yes	23rd June 2014	yes	Les Morrice
2, Greenbank	12	83.0	GSL - 134622	80.5	32	Double	83.0	23rd June 2014	yes	23rd June 2014	yes	Les Morrice
3, Greenbank	13	85.0	GSL - 134626	80.5	32	Double	85.0	24th June 2014	yes	24th June 2014	yes	Les Morrice
4, Greenbank	14	85.0	GSL - 134627	80.5	32	Single	85.0	24th June 2014	yes	24th June 2014	yes	Les Morrice
1, Chapel Gate	15	87.0	GSL - 134628	84.5	32	Single	87.0	24th June 2014	yes	24th June 2014	yes	Les Morrice
3, Chapel Gate	16	88.0	GSL - 134629	84.5	32	Single	88.0	24th June 2014	yes	24th June 2014	yes	Les Morrice

Mark up of borehole layout drawing

Q & A on session 4

Any questions....

Any slides you want to go back to?